2

1.	(a)	the e	equilibrium moves to minimise the effects of the change/ eteract/ resist/ oppose the change (1)	2	
	(b)	(i)	equilibrium moves towards LHS/ towards NO_2 (1) forward reaction is exothermic/ reverse reaction is endothermic (1)	2	
		(ii)	equilibrium moves towards RHS/ towards N_2O_4 (1) fewer moles on RHS (1)	2	
		(iii)	no change in equilibrium position (1) catalyst speeds up forward ad reverse reactions by same amount (1)	2	[8]
2.	(i)		e displaced to the right (1) imum is lower (1)	2	
	(ii)		under curve exceeding $E_{\rm a}$ = number of molecules that can react (1) gher temperature, area under curve > $E_{\rm a}$ is greater so more can react (1)	2	[4]
3.	(a)	(i)	$MgCO_{3}(s) + 2HCl(aq) \rightarrow MgCl_{2}(aq) + CO_{2}(g) + H_{2}O(l)$		
			balancing ✓ state symbols ✓	2	
	(b)	(rate	the reaction proceeds) the concentration decreases \checkmark of collision decreases \checkmark tion stops when all of one reagent is used up \checkmark	3	
	(a)	(i)	sketch to show slower rate of production ie less steep (must not be		
	(c)	(1)	straight line) \checkmark final volume the same but reached later \checkmark	2	
		(ii)	rate is slower because weak acid is partially ionised/ dissociated ✓		
			lower concentration of H^+ in weak/ higher concentration of H^+ in strong/ HCl	2	[9]
4.	any	two fro	om		
	rate mac	of forv	ward reaction = rate reverse reaction ✓ ic properties remain constant/ concentrations stant ✓		

closed system needed \checkmark

	(i)	a substance that alters the rate of a reaction without being used up / a substance that lowers the activation energy (for a reaction) by providing an alternative route ✓	1	
	(ii)	catalyst is in the same state/ phase as reactants 🗸	1	
	(iii)	$H^+ \checkmark$	1	
	(iv)	they alter the rate of the forward and the reverse reaction by the same amount ✓	1	[6]
5.	(i)	axes labelled y as number/ fraction/ % of molecules/ particles and x as energy/ enthalpy/ velocity/ speed \checkmark correct shape to include origin, hump and position wrt x axis \checkmark	2	
	(ii)	two vertical lines drawn both to the RHS of hump (at least		
		one labelled Ea) (labels reversed cannot score) \checkmark greater proportion of collisions have energy greater than Ea / more molecules exceed Ea \checkmark	2	[4]
6.	(a)	pressure 50 − 1000 atm ✓ temperature 200 − 600°C ✓	2	
	(b)	rate (increased) pressure increases rate because molecules are closer together/ more concentrated ✓ (increased) temperature increases rate because molecules are moving faster/ have more energy ✓	9	
		equilibrium increased pressure pushes equilibrium to RHS ✓ because fewer (gas) moles/ molecules on RHS ✓		
		increased temperature pushes equilibrium to LHS ✓ because (forward) reaction is exothermic ✓		
		compromise if temperature is too high, low yield ✓ if temperature is too low, slow rate ✓		
		if pressure is too high, increased costs/ safety issues ✓		[11]

7.	(a)		the conditions on a reaction in equilibrium are changed/ disturbed vaquilibrium) moves in the direction to minimise the effects of the ge v	2
	(b)	(i)	equilibrium moves to the LHS/ more X_2 and Y_2 are produced \checkmark	
			more moles (of gas)/ particles on LHS ✓	2
		(ii)	rate becomes less as there are less particles in a unit volume/ concentration less/ more space between particles \checkmark	
			therefore there are less (frequent) collisions 🗸	2
	(c)	(i)	16–17 % ✓	1
		(ii)	as the temperature increases the conversion decreases 🗸	
			(equilibrium) has moved to LHS/ has moved in endothermic direction ✓	2
	(d)	(i)	increases ✓	
			because more collisions exceed (lowered) E_a / because the catalyst provides alternative route with a lower activation energy \checkmark	an 2
		(ii)	no change ✓	
		` '	forwards and reverse rates increased by same amount \checkmark	2
			·	[13]
8.	moled energy shaped cross explated 2 from most area of district hump and to E_a materials.	cules/a gy (1) e starting x a unation m olecule very en have a under c bution o lower o RHS arked (ncrease	es with an increase in temperature (1)	9
	since	more	molecules have energy $> E_a$ (1)	101

[9]

9.	(a)	to overcom	e activation energy (1)		
		reaction is	endothermic (1)		
		to break bo	nds – if type of bonds stated must be ionic or covalent (1)		
		A2 answer	based on polarisation of carbonate by Ca ²⁺ is acceptable	2	
	(b)	(i) rate f	Forward > rate backward (1)	1	
		(ii) rate f	Forward = rate backward (1)	1	
		(iii) equil	ibrium moves to RHS (1)		
		use c	of le Chatelier (1)		
		more	CaO /product / less CaCO ₃ / reactant present (1)	3	[7]
10.	(a)	•	n range 30 - 40% (1)		
		if range giv	en all values must be in this range	1	
	(b)	(i) incre	ases (1)	1	
			moles of A and B (1) ibrium moves in direction of less moles (1)	2	
	(c)	endothermi	c (marks for explanation)		
		equilibrium forward rea	in temperature converts more A (1) moves in direction to lower temperature/ action must tend to lower temperature/ in temperature favours the endothermic	2	
	(d)	· /	estance that alters/increases the rate of ion/lowers Ea (1)		
		but r	emains unchanged after the reaction /is not used up (1)	2	
			we energy/money + reason eg by allowing process n at a lower temperature/ by lowering Ea (1)		
		•	faster to save time / allows the process to run nuously (1)	2	
	(e)		time was allowed for the equilibrium to ther products were formed (1)	1	

	(f)	two important catalysts, examples include iron in Haber process/ manufacture of ammonia vanadium(V) oxide in Contact process/ manufacture of sulphuric acid nickel in hydrogenation of alkenes/ manufacture of margarines phosphoric acid in the conversion ethene to ethanol enzyme/ named enzyme with corresponding function Pt/Pd/Rh in catalytic converter (any 1 metal) Ziegler catalyst in alkene		
		any named acid (except nitric) in esterification zeolites/ platinum in catalytic cracking	2	[13]
11.	(i)	more CO and H ₂ / less CH ₃ OH/ moves to LHS ✓ reaction is exothermic/ ora ✓ (moves in endothermic direction scores 1) less CO and H ₂ / more CH ₃ OH/ moves to RHS ✓	4	
		more mole/molecules/particles on LHS/ ora ✓		
	(ii)	more particles per unit volume/ increased concentration/ particles closer together ✓ more collisions and increases rate✓	2	
	(iii)	heterogeneous 🗸	1	
	(iv)	none ✓		
		affects forward and reverse reaction the same ✓	2	[9]
12.	(a)	the statement is true because there are more collisions (as temperature increases) increase in temperature increases the velocity/ energy of particles \checkmark rate increases (with increase in temperature) more than can be explained by this/ but not all collisions are successful \checkmark to be successful collisions must exceed E_a	✓	
		if temperature increased higher proportion of collisions exceed $E_{\rm a}$	5	
	(b)	 (i) y axis: fraction/ number of particles/ molecules/ atoms ✓ x axis: energy/ velocity ✓ 	2	
		(ii) line labelled T₂ with higher maximum ✓ maximum to LHS of original line ✓ (must start at 0.0, be below original curve at higher energies, cut the other curve only once and not cross the × axis	2	[9]

13.	if the conditions on a system in equilibrium are changed (1)				
	the e	quilibrium moves to try to minimise the effects of the change (1)		[2]	
14.	(i)	time less (1)			
		E _a lowered (1)	2		
	(ii)	time less (1)			
		more collisions/ particles exceed $\mathbf{E_a}$ (1)	2		
	(iii)	time more (1)			
		particles are further apart and therefore less (frequent) collisions (1)	2	701	
				[6]	
15.	(i)	no effect because it only increases rate of reaction (1)	1		
	(ii)	moves to LHS/ more N_2 and H_2 / less NH_3 (1)			
		forward reaction is exothermic (1)	2		
	(iii)	moves to LHS / more N_2 and H_2 / less NH_3 (1)			
		fewer moles on RHS (1)	2	[5]	
16.	whei	the conditions on a system in equilibrium are changed (1)			
		quilibrium moves to minimise the effects of the change/			
		teract/ resist/ oppose the change (1)			
				[2]	
17.	(i)	becomes brown/ darker/ colour more intense (1)			
		moves towards LHS/ towards NO ₂ (1)			
		forward reaction is exothermic/ reverse reaction is endothermic (1)	3		
	(ii)	becomes less brown/ pale/ colourless (1)			
		moves towards RHS/ towards N_2O_4 (1)			
		fewer moles on RHS (1)	3	[6]	
				[6]	

18.	catal	yst alters rate of reaction/lowers Ea (1)		
		ins unchanged after the reaction/ is not changed at the end of the reaction negated by does not take part in reaction (1)		[2]
19.	the (en a system in dynamic equilibrium is subjected to a change in conditions) position of) equilibrium will shift \checkmark e direction that minimises the effect of /opposes the change \checkmark T negates, nullifies or cancels]		[2]
20.	Any • •	two of the following bullet points $\checkmark\checkmark$ forward rate = reverse rate [NOT just "forward reaction = reverse reaction"] can be approached from either direction ["forward rate of reaction = reverse rate of reaction" is worth both the above bullet points] no change in overall macroscopic properties or a specific one (e.g. colour) takes place in a closed system [N.B. every wrong point negates a correct one]		[2]
21.	incre	n yellow) to orange \checkmark easing $[H^+]$ or more acid/HCl es equilibrium/reaction to the left or produces more $\operatorname{Cr_2O_7}^{2^-} \checkmark$		[2]
22.	(i)	turns lighter brown/colourless \checkmark (equilibrium/reaction moves to the right): fewer molecules/particles/moles on right $or\ 2$ moles $\rightarrow 1$ mole \checkmark	2	
	(ii)	turns darker (brown) ✓ (equilibrium/reaction moves to the left): L→R/forward rxn is exothermic. ✓	2	
	is un	i) and (ii) mark the observation first, and then the reason. Each mark conditional on the other.] [in (ii), if neither mark is scored and you are inced that the only error is mixing up endo/exo-thermic, you may		
	awai	rd [1] mark]		[4]

23.	(adding	a ca	italysi	t):

- speeds up a reaction
- provides an alternative route or forms an intermediate of some sort
- of lower E_{act} (can be read into a label on a Boltzmann distribution)
- so more molecules have $E > E_{act}$ or more collisions are successful
- weakens bonds in the reactants

[any 4 points.]
$$\checkmark\checkmark\checkmark\checkmark$$

[5]

24. No mark scheme available

25. No mark scheme available

26. No mark scheme available